RYAN FELLINI, PhD

Los Angeles, California

e-mail: ryan.fellini at umich.edu

SUMMARY

Interdisciplinary mechanical engineer with extensive experience in research, mathematical and numerical optimization theory, systems optimization methods, and finite element analysis. Consistently-demonstrated growth by achieving expertise in new technical disciplines, along with developing process improvements and original research. Background includes advanced automotive powertrain systems, spacecraft structures, software development, and large-scale simulation. Advanced Italian, basic German.

EXPERIENCE

NORTHROP GRUMMAN AEROSPACE SYSTEMS

Redondo Beach, California **2004-Present**

Senior Mechanical Engineer, Space Systems Division **2004-Present** Support development and production of the James Webb Space Telescope (JWST) spacecraft

and sunshield subsystems. Analyze strength/stability, thermal distortion, dynamic response, and overall structural and optical performance of spacecraft components and subsystems, including development of system models.

- Attained and utilized expertise in the application of structural analysis methods and simulation tools, such as linear and nonlinear finite element methods. Applied cutting-edge methodologies to the analysis of bonded composite structures under cryogenic conditions.
- Researched innovative methods to simulate highly nonlinear structures; developed methodologies for the analysis and design of next-generation thin-film membrane space structures, such as in use with the JWST sunshield.
- Gained experience in the design and analysis of ultra-precision structures, such as JWST's star tracker assembly support structure.
- Responsible for performing key optimization studies of the JWST spacecraft necessary in order to meet challenging observatory system-level performance objectives.
- Initiated multidisciplinary design optimization (MDO) research and development project at the Space Systems Divisions, focusing initially on the design of mechanical systems.
- Obtained research experience in the engineering and application of ultra-thin IMM solar cells to next-generation spacecraft solar arrays.
- Generated theoretical and software training courses for in-house SPACE University, lecturing two classes (24 students in total) in the use of analysis and optimization software.

FORD MOTOR COMPANY

Dearborn, Michigan

Ann Arbor, Michigan

Software Developer, V-Engine Engineering/Powertrain Operations **2003-2004**Developed optimization software and computer-aided engineering tools that interface with in-house and commercial engine simulation codes.

- Provided internal customer support for implementation and feature enhancement of optimization tools.
- Performed overhaul of existing C++ software and initiating new tools-development projects.

UNIVERSITY OF MICHIGAN Research Assistant, Optimal Design Laboratory

1996-2003

Developed expertise in the field of mathematical optimization; contributing original research to the scientific field. Presented technical articles and provided peer review for scientific journals.

- Led research projects and completed case studies for Industry-Government Dual Use Science & Technology (DUST) project.
- Provided sponsors with analytical tools that identify efficient platform architectures; design studies achieved significant component and complexity reduction for a family of engines.
- Researched surrogate-modeling (approximation) techniques and system-of-systems optimization methods.
- Developed novel mathematical methods, utilizing optimal design theory, which allow for the
 design and analysis of product families. Methods provide for the optimal selection of
 common components; aiding in the identification of modular architectures.
- Conducted design studies on advanced automotive systems for the Automotive Research Center (ARC) and General Motors Collaborative Research Laboratory (GM CRL).

Fellini, Ryan April 2010 – Page 1/2

Instructor, Department of Mechanical Engineering

Spring 1997, 1998, 1999

Responsible for daily lecture preparation, assigning and grading homework, along with holding regular office hours.

- Instructed two sophomore mechanical engineering classes (42 students in total) in the use of Unigraphics CAD/CAM software and CNC machines.
- Provided guidance to students during their term design project (1997).
- Advised students on optimal design theory, its application, and in the use of optimization software for a graduate-level design optimization course (1998; 1999).

GENERAL MOTORS R&D AND PLANNING CENTER

Warren, Michigan

Research Assistant, Powertrain Systems Research Laboratory **Summer 1998, 1999**Developed a MATLAB-based optimization toolbox that incorporates state-of-the-art optimization algorithms, tailored for use with powertrain simulations.

- Integrated the software package with a General Motors simulation tool in order to facilitate quick concept studies of advanced powertrain architectures.
- Performed trade studies and well-to-wheel analysis on concepts such as electric vehicles (EVs), hybrid electric vehicles (HEVs), hybrid hydraulic vehicles (HHVs), etc.

LAMPART VEGYIPARI GÉPGYÁR RT.

Budapest, Hungary

Design Engineer

Summer 1996

Participated in the International Association for the Exchange of Students for Technical Experience (IAESTE) program.

- Designed and engineered chemical pressure vessels using AutoCAD design software; digitized existing designs to allow for a reduction in product-development lead time.
- Participated in several high-profile design projects for a client in Sweden.

EDUCATION

UNIVERSITY OF MICHIGAN

Ann Arbor, Michigan

Post Doctorate, Mechanical Engineering

2004

Research areas: product component commonality, system-of-systems optimization, model approximations

Doctor of Philosophy (PhD), Mechanical Engineering

2003

Specialization: mathematical and numerical optimization theory

Dissertation: A Model-Based Methodology for Product Family Design

Chair: Dr. Panos Papalambros

Qualifying exams: design (optimization theory concentration), dynamics, solid mechanics, thermodynamics

Master of Science in Engineering (MSE), Mechanical Engineering

1998

Thesis: Derivative-Free and Global Search Optimization Algorithms in an Object-Oriented Design Framework Chair: Dr. Panos Papalambros

VIRGINIA TECH

Blacksburg, Virginia

Bachelor of Science in Mechanical Engineering (BSME), Cum Laude

1996

Advisor: Dr. Michael Furey

Senior Project: Body design for open-wheel racecar; placed 5th at the International Formula SAE competition Certified Engineer-In-Training (EIT) – Passed Fundamentals of Engineering (FE) examination

AFFILIATIONS

American Institute of Aeronautics and Astronautics (AIAA) – Senior Member

American Society Of Mechanical Engineers (ASME) - Member

Intl. Society of Structural and Multidisciplinary Optimization (ISSMO) – Associate Member Society of Automotive Engineers (SAE) – Member

Society for the Advancement of Material and Process Engineering (SAMPE) - Member

TECHNICAL SKILLS

Programming: C++, Java, Perl, MATLAB, FORTRAN, XML

Platforms: Mac OS X, UNIX/Linux, Windows

CAD/CAE: AutoCAD, Unigraphics, Mathcad, Catia V5 (basic)

Finite Element Analysis: ABAQUS, MSC.Nastran, NX.Nastran, MSC.Patran, Femap

Optimization software: Noesis OPTIMUS, Engineous iSIGHT, MATLAB Optimization Toolbox

Mathematical optimization and multidisciplinary design optimization (MDO)

Linear, nonlinear, integer programming; as well as evolutionary/genetic algorithms

Analytical system-of-systems optimization methods

Application of adaptive systems such as artificial neural networks (ANNs)

Distributed computing, software development, and large-scale simulation

Fellini, Ryan April 2010 – Page 2/2